

Presented at the 21st Annual Tcl Developer’s Conference (Tcl’2014)
Portland, Oregon

November 10th-14th, 2014

Sean Deely Woods
Senior Developer
Test and Evaluations Solutions, LLC
400 Holiday Court
Suite 204
Warrenton, VA 20185

Odie and Sherpa

Tools to automate the building of Tcl/Tk and its most
common extensions from bare metal

Abstract
Many casual developers can leverage the power of tclkits and the teapot to assemble self-

contained executables. But what happens when you need something that isn’t included in the
teapot? Or if you are building on an exotic platform that ActiveTcl doesn’t support yet? What if
you work in an environment where you have to certify everything you have built?

This paper describes Odie, an environment for performing automated builds of Tcl/Tk and its
assorted packages. Included in this environment is Sherpa, a package management tool that
combines a kit-building tool, automated documenter, and package retriever.

Odie
Odie is the Open Design and Integration Environment. Think of it as a self-contained build

factory for all things Tcl/Tk. It consists of a pile of autoconf scripts, shell scripts, Makefiles, and
Tcl scripts to automate the building of Tcl/Tk. Odie is designed to yank components from the
web as fossil repositories. It also understands how to work with Git and plain old tarballs.

Major components

Odie Bootstrap
Odie bootstrap is the base Odie repository. Cloned from fossil, and unpacked in the place of the

user’s choosing. It contains all of the components to download and install:
1. A dedicated local copy of Tcl/Tk,
2. A self-contained seed executable called a basekit
3. The Sherpa build system.

Odielib
Odielib is my collection of Tcl and C code for building software. Embedded in the Tcl library

are pure-tcl equivalents for most of the C functions, and a script to detect if the C library is
present or not. Odielib is distributed in the same fossil repository as the Odie bootstrap.

Tao
Tao, the Tcl Architecture of Objects, is a dialect of TclOO. It contains several enhancements

and core object functions that the rest of my code library has come to rely on. Chief among them:
property handling. Tao is distributed as a separate repository, which is unpacked in the Odie
sandbox, and installed in the local Tcl’s auto_path.

Sherpa
Sherpa is a command line interface to the tools in Odie. It makes it really handy for integrating

Tcl code into the Make/Automake process. Sherpa, and its supporting libraries, are written in
Tao and assembled into a self-contained executable at install time. Sherpa builds as a self-
contained binary, and thus it can work outside of the confines of Odie. Sherpa is distributed in
the same fossil repository as the Odie bootstrap.

Why Build Tcl from Scratch?
Building Tcl/Tk is not often required by the end-user. The presence of Tcl is generally assumed

in most Unix environments. On Windows, Activestate does a wonderful job of keeping us up to
date.

However, being part of most operating systems, trying to upgrade to the latest version of Tcl is
not without its headaches. Some commonly used packages rely on very old behaviors. OS
maintainers keep versions of tools locked in time. Sometimes they throw an extra flag at the
linker that means any extension you try to compile is going to lead to a nasty crash.

The instructions for building Tcl often defer to a default set of assumptions:
a) You are running on Unix
b) You have admin privileges
c) That installing your own Tcl/Tk in /usr/local won’t cause chaos with other system tools
d) The defaults for ./configure produce a workable Tcl/Tk for your platform.

Odie stems from my own experience where one or more of the above isn’t true:
• As an undergrad, I would often have to work on large multi-user systems that granted

me access to a C compiler, but where I was restricted to my home directory.
• Working on OSX, the operating system has a resident Tcl/Tk. It is heavily modified,

and locked in time at Tcl 8.5.9. ActiveTcl installs to /usr/local. The UNIX
environment builder MacPorts had a different Tcl/Tk installed to /opt/local. All are in
the system path. None like to be tampered with.

• Recently at T&E Solutions, I have had to support simultaneous builds on Linux,
MacOSX, and Windows. One project required the coroutines from the then beta 8.6.

• Apple has released a series of upgrades that crippled the Cocoa based Tk port. We had
to work with builds checked out directly from fossil. Oh yes… and we had to
recompile all of the Tk-related extensions as well.

Now I can’t say my experience is typical. Nevertheless, if I’ve learned anything as a developer,
typical is a word in the dictionary between typhus and typocosmy1

Fundamental Assumptions of Odie
Odie has its own set of fundamental assumptions:

• The developer cannot trust any Tcl/Tk found in the path. Tcl scripts that are part of the
build environment can rely on a dedicated Tcl.

• A C development environment is already present on the developer’s machine.
• Any binaries produced by the developer will ultimately be run on a different machine,

thus must be self-contained.
• Odie is not permitted to install tools in the system path.

1 “typic.” webstersdictionary1828.com/Dictionary/T, 1828. Web. 12 Oct 2014

Setting up Odie
Odie is distributed as a fossil repository. This allows the user to push modifications to all of

their build environments in an orderly fashion. It also allows special branches to be made to
tailor the process to particular projects or peculiar build environments. It is also handy to be able
to pull a build system from back in time to reconstruct an environment for a bygone platform.

With a technical crowd, it is best to lead in with an example. To set up a garden variety
instance of Odie:

$ mkdir –p ~/odie/sandbox/odie
$ mkdir –p ~/odie/download
$ fossil clone http://fossil.etoyoc.com/fossil/odie ~/odie/download/odie.fossil
$ cd ~/odie/sandbox/odie
$ fossil open ~/odie/download/odie.fossil
$./configure --prefix=$HOME/odie
$ make install

If you want to save a little time, be sure to copy the fossil repositories you received on the
memory stick from the conference into the ~/odie/download folder. They’ll save you a bit of
time in cloning the repositories.

Grab some coffee; it will be a little while. So, while we are waiting, let me explain what is
going on. Once all of these steps are completed you should see a directory structure of tools built
under ~/odie

~/odie/sandbox Contained within will be folders for the sources of Tcl, Tk, and all of its
extensions built by Odie

~/odie/download Contained within will be the fossil repositories that Tcl and its
extensions where checked out of. For tarball-derived sources, the
tarballs will be downloaded here. The teapot will save packages here.
Later on, as Sherpa will cache packages as teapots here.

~/odie/bin Where binaries are installed. The most important will be:

tclsh86 – Tcl
wish86 – Wish

sherpa – A self contained executable for Sherpa
tclkit86 – Tcl/Tk assembled as a self-contained executable.

~/odie/lib Location where Tcl/Tk’s shared libraries and extensions are installed for
local use.

Configuring Odie
There are three main directories of interest to the developer:

• Downloads – Where tarballs are downloaded, where fossil repositories are cloned, and
where teapot caches its files. This may (and probably should) be a central folder for all
instances of Odie.

• Sandbox – Where source code is unpacked and built. This should be unique for every
Odie instance.

• Prefix – The top-level directory where Odie installs its tools.

The location of each of these folders is configurable at ./configure time:
• --prefix Controls prefix. On Unix this defaults to $HOME/odie. On Windows, this

defaults to C:/odie. (We can’t rely on $HOME under Windows. See Notes.)
• --with-download Controls the location of the download folder. If not specified, it

defaults to $PREFIX/odie
• --with-sandbox Controls the location of the sandbox folder. If not specified, it defaults

to $PREFIX/sandbox.

In the above example, we have configured Odie with the standard prefix. ./configure will
assume the sandbox will be located at ${PREFIX}/sandbox and the download folder will be at
${PREFIX}/download. It will also assume we want as standard Tcl/Tk build as is defined for
this platform.

Other flags that developers may be interested in:
• --with-tclbranch – Specifies what version of Tcl to check out of the fossil repository.

This can be a tag such as “core-8-6-2”. Tag can also be the sha1 string of a particular
checkout. If not specified, the default is “trunk.” (i.e. the most recent semi-stable
checkout of Tcl.)

• --with-tkbranch – Specifies what version of Tk to check out of the fossil repository.
This can also be a tag, or sha1 tag. If not specified, the default is whatever branch was
specified for Tcl. If the value of tag is “none”, no Tk or Tk related extensions are built
for this Odie.

• --enable-cocoa – On MacOSX, --enable-cocoa=no will cause Tk and its related
extensions to target X11 instead of the native cocoa port. (When building Tk, this is
equivalent to –enable-aqua.)

Multiple Instances of Odie
In my case, I usually find myself doing most of my work on my Mac. On my Mac, I keep two

installations of Odie. One targets the native Cocoa port of Tk. The other targets the X11 port of
Tk. (Some of the visuals I work with operate better in one or the other.) Odie will default to the
Cocoa port, so if we want to build a second instance targeting X11:
mkdir –p ~/odie-x11/sandbox/odie
cd ~/odie-x11/sandbox/odie
fossil open ~/odie/download/odie.fossil
./configure --prefix=$HOME/odie-x11 --with-download=$HOME/odie/download --enable-cocoa=NO
make install

Both of these instances will live, happily, side by side in one’s home directory. The ~/odie path
will build Tcl/Tk and all of its extensions with bindings for Cocoa. The ~/odie-x11 path will
build Tcl/Tk and all of its extensions with bindings for X11. Each will get its own Tclsh, and
Wish, basekit, Sherpa, and extensions.

They will share a download folder. So I will have only one instance of the Odie fossil
repository, and one instance of the Tcl repository, one copy of the SQLite source tarball, and so
on. Two fossil checkouts sharing a common repository have a nifty side benefit: You can swap
private checkouts between them.
cd ~/odie/sandbox/taolib
echo “Sean is cool!” >> README
fossil commit --private ; # Checking in evaluation version
cd ~/odie-x11/sandbox/taolib
fossil update private
UPDATE README

Using Odie
Configuration Files

When ./configure is run, Odie builds two files to assist any other product with integration:
odieConfig.sh and odieConfig.tcl. Both contain roughly the same information. odieConfig.sh is
in a format useful for Makefiles and shell scripts. odieConfig.tcl is in a format useful for Tcl. The
configuration files capture vital information about the local environment. They tell Odie where it
will find key executables it will need.

Basekits
Along with a standard dynamically linked Tcl/Tk, your Odie also built a modified Tcl shell

called a basekit. It will be located at ~/odie/bin/tclkit86 on Unix, or c:/odie/bin/tclkit86.exe in
windows. The basekit is a self-contained copy of Tcl/Tk with ZipVFS support. Concatenated to
the standard Tcl shell is a zip file system, and within the zip, the file system contains the files for
tcl_library and tk_library. As built, the shell behaves like any other Tclsh:
Mac:Odie hypnotoad$ ~/odie/bin/tclkit86
% puts “Hello World!”
Hello World!
% exit
Mac:Odie hypnotoad$ echo puts {Hello World!} > hello.tcl
~/odie/bin/tclkit86 hello.tcl
Hello World!

The only noticeable difference between Tclkit and Tclsh is that Tclkit will report /zvfs/boot/tcl
as its location for tcl_library. /zvfs is the mount point the boot loader selects at startup.

You can turn a Tclkit into a self-contained executable by giving it a main.tcl file in the zip file
system.
Mac:Odie hypnotoad$ cp ~/odie/bin/tclkit mykit
cp hello.tcl main.tcl
zip –A mykit main.tcl
./mykit
Hello World!

In addition to Tcl scripts, you can also embed images, dynamic libraries, and virtually any other
type of file you may need. Well, anything you may need that works with read-only access.

Unless Tk was disabled during ./configure, it is packed into the Tclkit as a dynamically loaded
library. Accessing Tk is as simple as “package require Tk.”

Sherpa
Alongside of the basekits and Tcl and wish in your ~/odie/bin folder you will see another

executable sherpa. Sherpa has two jobs:
1. Build, install, and maintain packages for the local Odie environment.
2. Build and package extensions for inclusion in virtual file systems.

Sherpa is a tool for building the Virtual File Systems (VFS) of self-contained applications. It
interacts with Odie and the teapot to either download or build Tcl extensions. It will then
assemble the VFS and index all of the packages properly for loading.

Included with Odie are the ingredients for several Apps. Let’s focus on the “toadkit”. Toadkit is
a modified basekit with packages needed for gaming. You can find that project in
~/odie/sandbox/odie/apps/toadkit. That project consists solely of a Makefile:
#!/usr/bin/make
include ../../odieConfig.sh
APPNAME=toadkit
PACKAGES=sqlite tcllib taolib odielib udp tclvfs vectcl tkimg canvas3d tkhtml tklib

all: ${APPNAME}${EXE}

clean:
 $(SHERPA) rmdir ${APPNAME} ${APPNAME}.exe ${APPNAME}.vfs $(irmtarget)

${APPNAME}${EXE}: ${BASEKIT} ${APPNAME}.vfs
 cp ${BASEKIT} ${APPNAME}${EXE}
 cd ${APPNAME}.vfs ; $(ZIP) -rAq ../${APPNAME}${EXE} .
 chmod a+x ${APPNAME}${EXE}

${APPNAME}.vfs:
 $(SHERPA) rmdir ${APPNAME}.vfs manifest.txt plugin.zip
 mkdir -p ${APPNAME}.vfs
 $(SHERPA) vfs-install ${APPNAME}.vfs ${PACKAGES}
 $(SHERPA) vfs-mkIndex ${APPNAME}.vfs

install: ${APPNAME}${EXE}
 cp -f ${APPNAME}${EXE} ${LOCAL_REPO}/bin/${APPNAME}${EXE}

As you can see, the Makefile is remarkably simple. All of the heavy lifting is done by Sherpa.
The call to include odieConfig.sh loads the environment with everything the script will need to
know. $(SHERPA) is the call to the local build of the Sherpa toolkit. We even go so far as to tell
the Makefile whether an executable will need a .EXE extension.

Using Sherpa
The Sherpa executable is a flexible tool. It has embedded within in the TclVFS extension, the

entire Tcllib, and a complete list of recipes to build most of the common Tcl/Tk extensions. All
of those functions are accessible from the command line.

Package Utilities
These routines maintain packages within the local Odie. To manage packages in a virtual file

system (i.e. when building a self contained executable) use the vfs series of commands.

sherpa	 package-‐fetch	 packagename	 ?packagename…?	

Download and unpack into the sandbox the packages specified.

sherpa	 package-‐install	 packagename	 ?packagename…?	

Install one or more packages to Odie. Sherpa will try to download, compile, and install from
source when possible. When not possible, it will attempt to obtain the package from the Teapot.

sherpa	 package-‐list	 	

Output to stdout a list of all packages supported by this copy of Sherpa. Output is in the form
of:
modulename class
modulename class
…

sherpa	 package-‐reinstall	 packagename	 ?packagename…?	

Skips checks to see if a package is already present, and performs a fresh compile and install.
For Tcl packages, this function will also rebuild the teapot cache of a package.

sherpa	 package-‐uninstall	 packagename	 ?packagename…?	

Remove one or more packages from Odie. Any local files related to the teapot are also
removed.

sherpa	 package-‐upgrade	 packagename	 ?packagename…?	

Check with the distribution systems for the packages specified and detect if a new version is
available. If a new version is available, download, compile and install it.

Teapot Access
Sherpa utilizes Roy Keene’s teapot clone teaparty to locate any extension for which it does not

have a recipe. While functions from teaparty are utilized internally by Sherpa, these functions
provide direct access to the teapot.

sherpa	 teapot-‐get	 vfsroot	 os	 cpu	 package	 ?package…?	

Retrieve one or more packages from the teapot that are compatible with the os and cpu
combination, and install them to the path specified by vfsroot.

sherpa	 teapot-‐info	

Output the following block of text to stdout:

OS: $VALUE
CPU: $VALUE
SERVERS: $VALUE

Where:

• OS is the operating system as computed by Odie
• CPU is the architecture as computed by Odie
• SERVERS is a list of the teapot servers that Sherpa is configured to use

sherpa	 teapot-‐list	 ?os?	 ?cpu?	

Return a list of all packages available for the combination of os and cpu.

Virtual File System Utilities
The suite of routines to package virtual file systems.

sherpa	 vfs-‐install	 vfsroot	 packagename	 ?packagename…?	

The call to sherpa vfs_install downloads, compiles, and installs into the folder specified all of
the listed extensions. The extensions will be placed in the “teapot” folder of the VFS. Each
extension will be stored in a folder named after the md5 hash of the extension combined with its
platform and version.
 ${SHERPA) vfs_install ${APPNAME}.vfs ${PACKAGES}
ls ${APPNAME}.vfs/teapot
67368B11EFB262C049F7B484389295C6 B8F5129A8E937A249A33920287689053
B2C6534EE22ACE3EE02317854940A3C1 FF86E501D7C25BDDF4F2C2BBFE6739AA

ls toadkit.vfs/teapot/B8F5129A8E937A249A33920287689053/
pkgIndex.tcl libsqlite3.8.5.dylib teapot.txt

We utilize hashes to eliminate name collisions, spaces in names, funky characters,
capitalization, or whatever may cause us grief down the road.

sherpa	 vfs-‐mkIndex	

While it would be possible to initialize our program by adding the “teapot” folder to the
auto_path, up until recently ZipVFS could not reliably glob for files. To get around that
limitation, I was always in the habit of pre-indexing my extensions. To do this, Sherpa will
descend into the VFS folder, and locate every pkgIndex.tcl file. It will then build a script called
packages.tcl. Sourcing this file will have Tcl systematically source each of the pkgIndex.tcl files
in their appropriate path. For folders without a pkgIndex.tcl, Sherpa will examine each file
ending in .tcl for package provides statements, and add the appropriate package ifneeded to the
packages.tcl script.

For pkgIndex.tcl files, you will see a line like this:
set dir [file join [lindex $::PATHSTACK end] \
 teapot/67368B11EFB262C049F7B484389295C6/lib/tcllib1.16/wip] ; \
source [file join [lindex $::PATHSTACK end] \
 teapot/67368B11EFB262C049F7B484389295C6/lib/tcllib1.16/wip pkgIndex.tcl]

For standalone files, you will see a line like this:

package ifneeded codebale 0.2 [list source [file join [lindex $::PATHSTACK end] lib/codebale
index.tcl]]

The net result will be that your executable will have instant knowledge of the entire library of
code available within the VFS in one shot, and without having to undergo a discovery process.
This is particularly helpful, because if Tcl doesn’t have to resort to “package unknown” it won’t
look outside of the VFS for software.

General Purpose Tools
Sherpa contains a few creature comforts that use Tcl’s facilities to replicate commonly needed

system utilities.

sherpa	 diff	 filename	 filename	

Invoke a resident copy of tkdiff to compare two files.

sherpa	 edit	 filename	

Invoke a resident copy of Richard Hipp’s “e” file editor. Great for times when you just need to
hack an ASCII file, but you really don’t have (or don’t want to find) the resident text editor. Also
handy for cases like under Windows when the resident text editor either doesn’t understand line
breaks (notepad.exe) or wants to turn your document into a word processing document
(wordpad.exe)

sherpa	 http-‐get	 url	 destination	

Download a file via http. This implementation is based on the http package, with an
enhancement that understands how to follow server document redirects. It should be noted that
the content redirects used by sourceforge and the like still confuse this command. Nevertheless,
it is handy for those simple downloads when you don’t have wget or curl handy.

sherpa	 module	 modulename	 method	 ?args…?	

Exercise the specified method of the specified module and express the output to stdout.

sherpa	 odie_config	 format	

Output to stdout the Odie environment used to build Sherpa. Sherpa will output the
configuration in two formats:

• sh – Compatible for inclusion in shell (/bin/sh) scripts and Makefiles
• tcl – Compatible for inclusion in Tcl scripts.

sherpa	 rmdir	 path	 ?path…?	

A way to recursively delete files through the power of Tcl. Needed for cases where MinGW
creates a path that it, itself, cannot erase. Particularly when building Critcl. Which, at one point
at least, seemed to like putting : characters into path names.

sherpa	 shell	

Open Sherpa with an interactive GUI prompt. All of the functions accessible directly from the
command line are located in the ::command namespace.

sherpa	 source	 filename	 ?encoding?	

Invoke a series of commands located in the file filename. This is implemented internally as:

proc ::command::source args {
 uplevel #0 [list source {*}$args]
}

sherpa	 unzip	 archive	 destpath	

Unpack a zipfile to the destination path specified. The command is implemented using the
zipfile::decode package included with Tcllib.

sherpa	 untar	 archive	 destpath	

Unpack a tarball to the destination specified. This command is implemented using the host
operating system’s tar command. (Future versions will use the tar facilities in Tcllib and/or
TclVFS.)

sherpa	 zip	 archive	 sourcepath	

Create a zipfile from the path given by sourcepath. This command is implemented using the
zipfile::encode package included with Tcllib.

Sean’s Private Spell Book
Sherpa also includes a few tools that I use that may or may not be generally useful. These tools

center around the technique I use for generating automated help systems, and a system I use to
reformat Tcl source files to suit my ideal of what a library of code should look like.

sherpa	 autodoc	 path	 ?path…?	

Index all source code in the paths specified, and place the output into the folder /autodoc,
relative to the module’s root path. For any Tcl source file that doesn’t conform to “Sean’s Own
Standard”, prepare a conforming implementation as “sourcefile.tcl.new”. The products in
/autodoc are helpdoc.rc and helpdoc.sqlite. The SQLite file is in the Tao’s Yggdrasil schema.
The rc file is the same information, but encoded in a script that would rebuild the SQLite file in a
local file system. (SQLite doesn’t like working inside of many VFS implementation, or off
network shares.)

sherpa	 autodoc_changes	

Find each Tcl source files with “corrections” made from a pass by sherpa autodoc. Present the
user with a diff and the option to keep the changes, delete the correction, or skip.

sherpa	 autodoc_scan	 ?path	 …?	

Perform the same indexing as sherpa autodoc, but without creating corrections.

sherpa	 scm-‐move	 source	 destination	

Move files in a repository from source to destination and record this move with fossil at the
same time. This tool only supports fossil repositories, currently.

Developing for Sherpa
Sherpa recipes include a collection of workarounds to get packages to build and install on the

platforms Odie supports. If it seems a little complicated, that is simply a reflection of how
difficult it really is to roll one’s own Tcl distribution. The process used by Sherpa is by no means
unique. It just happens to be (somewhat) documented.

Sherpa has two major concepts: modules and recipes. A module is a reusable block of code. A
recipe is machine executable process to download, install and/or package Tcl extensions and
other programs. Recipes are made of modules.

Each recipe for a package or tool is implemented as a TclOO object. Similar objects are
grouped into classes. Each is defined with a sherpa::recipe statement:
sherpa::recipe tclvfs {
 fossil_url {http://fossil.etoyoc.com/fossil/tclvfs}
 package_binary 1
 package_binary_tk 0
 destroot_capable 0
} sherpa.module.tea_fossil

The arguments for a Sherpa recipe are thus:

sherpa::recipe module_name property_dict implementation
 The implementation can be either the name of an existing implementation class, or the

definition of a new class as a block of TclOO code. In the example above, we are building the
TclVFS extension. The TclVFS extension is of the sherpa.module.tea_fossil variety. That class is
the fusion of two modules: sherpa.buildsystem.tea and sherpa.distribution.fossil. That
combination has several configuration options:

fossil_url Tells fossil where to clone the repository from

package_binary 1 Tells the tea build system to expect the recipe
to produce a binary Tcl extension

package_tk 0 Tells Sherpa that the binary Tcl extension does
not link to Tk

destroot_capable 0 Tells the build system that this particular
Makefile does not understand the convention
make DESTROOT=$PATH install. What it
will do instead is install the package to the
local system and then snapshot the folder under
$PREFIX/lib that is produced.

Packages that require custom code to build or download can have a more elaborate definition:
sherpa::recipe sqlite {
 aliases tclsqlite
 package_name sqlite
 package_version 3.8.5
 package_binary 1
 package_binary_tk 0
 tarball_dir sqlite-autoconf-3080500
 tarball_url {http://sqlite.org/2014/sqlite-autoconf-3080500.tar.gz}
} {
 superclass sherpa.distribution.tarball sherpa.buildsystem.tea

 method build_path {} {
 set path [file join [my module_path] tea]
 return $path
 }

 method native_vfs_install path {
 copy_path [file join $::Odie(local_repo) lib [my property package_name][my property
package_version]] [file join $path lib [my property package_name][my property package_version]]

 }
}

In this case, the SQLite extension has a non-tea standard location for compiling. Instead of
compiling in the top-level directory, or the platform directory, this package compiles from the
tea directory. There is also a slight complexity in the way that SQLite is distributed. It arrives as
a tarball that we will unpack. The folder it unpacks as will have to be renamed.

Sherpa contains many ready-made classes that can be combined to build most extensions in the
Tcl/Tk ecosystem. Modules also exist to build external tools like fossil and zip. The class
hierarchy of Sherpa’s classes looks roughly like this:

Module Classes
A “module” is a complete set of instructions for building and installing a Tcl package,

executable, or external tool. All Sherpa modules must implement the following functions:

Class:	 sherpa.module	

Method: sherpa_clean
Performs an operation to clean out the module path in preparation for a fresh build. Any

existing copy of the software is removed from Odie. All tracking records mark the package as
not installed.

Method: sherpa_build
As applicable, this command downloads the code, auto detects properties, and compiles it.

Method: sherpa_detect_properties
Combine the configuration fed into the recipe with data derived from the build system and

distribution system into a gestalt.

Method: sherpa_install
Perform the steps needed to install this package into the local Odie environment.

Method: sherpa_present
Return a true if the package is already installed in the local Odie, and false otherwise.

Method: sherpa_skip
Return a true if the package cannot be installed in this environment, false otherwise.

Method: sherpa_uninstall
Remove a package from Odie and the local teapot.

Method: sherpa_upgrade
Detect, download, recompile, and reinstall a package if a new version is available.

Method: sherpa_vfs_install base
Arguments: base – Top-level directory of a new virtual file system

Perform the steps needed to install this package into a virtual file system. If a cached version is
available in the teapot, that version is used. Otherwise, a call to the build system’s
build_vfs_install is made.

Interaction with Teapot
Sherpa uses teapot as a medium of exchange between installed packages and packages in a

VFS. This interaction also allows Sherpa to draw on the vast library of packages available
through the teapot that it does not have a recipe for, or for which the build tools are not present in
the local environment to make. These methods are implemented only for the subset of modules
that expect to produce Tcl extensions.

Class:	 sherpa.module.tclpkg	

A class that builds a Tcl package. This class consists mostly of workarounds to shoehorn non-
conforming packages to produce teapot compatible extensions.

Method: teapot_arch
Generate a string that represents what architecture this package would have in the teapot.

Method: teapot_build
1. Build a version of this package suitable for distributing in the teapot.
2. Stuff that VFS into the module directory as teapot.zip
3. Prepare a teapot.txt file with as much data as we can collect.

Implementations with their own tools for building place a teapot call their own code here. The
default is to build_vfs_install into a temporary location, and hammer that file structure into
shape with teapot_vfs_structure.

Method: teapot_cachefile
Return the fully qualified, normalized, path name to the cache file this package either generated

or will generate. For use in such wonderful functions as “file exists [my teapot_cachefile]”, or
“command::zip [my teapot_cachefile] $teapotvfs”, or “command::unzip [my teapot_cachefile]
$appvfs/teapot”

Method: teapot_info
For Tcl packages without a ready-made teapot.txt file making facility, return a key/value list of

all of the information needed to build one. This method produces a pre-amble, appends the
results of build_teapot_data and distribution_teapot_data, and concludes by exporting all of
the other meta data tracked by Sherpa as “Meta sherpa_property” lines.

Method: teapot_package_fqn
Return the fully qualified name for a package, as it would be found on a teapot server. i.e. in

the form of:
package/name/$PACKAGENAME/ver/$PACKAGEVER/arch/$PACKAGEARCH/file

Method: teapot_package_name
Return the output of teapot_package_fqn, using a cached copy. Some of the lookups used by

teapot_package_fqn have the potential to be expensive in the wrong circumstances.

Method: teapot_vfs_structure
Massage a product of build_vfs_install to conform to the structure as befitting teapot.

Class:	 sherpa.module.teapot	

This class is a placeholder for packages located in the teapot, but for which no local recipe is
available, or for which Sherpa is aware of a problem keeping this recipe from working in the
current environment. This class is essentially a driver to allow access to the teapot client. At
present, the class only supports downloading and installing pre-built packages.

Distribution Classes
Distribution classes tell Sherpa where and how to download source code. Some packages are

distributed as fossil repositories. Others use Git. Others are still shipped as tarballs. Each of those
distribution systems has its own behaviors, capabilities, and settings. Optionally, this class may
provide additional metadata for documentation and/or formulating teapot archives.

A distribution must implement the following methods:

Class:	 sherpa.distribution	

Method: distribution_download
This method performs all of the steps necessary to download the software from the Internet and

unpack the raw source to $SANDBOX/$MODULENAME.

Method: distribution_meta_data
This method extracts meta data from the source control system. Data is returned as a dict. The

default is to return an empty dict.

Method: distribution_teapot_data
Return a chunk of text describing this package to be included in the teapot.txt file.

Method: distribution_upgrade
This method:

1. Goes to the version control system and tried to determine if a new version is available
for download and installation.

2. If a new version is available, perform a download.

If a new version was downloaded, the method will return true. If no new version was
downloaded, the method will return false. This method is currently implemented for fossil
distributions only.

Class:	 sherpa.distribution.snapshot	

A class that defines behaviors utilized when code is distributed via a tarball or zipfile
downloaded from the Internet:

• snapshot_url – The URL from which the archive is downloaded
• snapshot_dir – The name of the directory created after unpacking the file. If null, the

archive is unpacked directly in the sandbox. Used for cases like SQLite, where the
tarball unpacks to “sqlite-030805-autoconf”, and we really want the directory to be
“sqlite.”

Class:	 sherpa.distribution.fossil	

A class that defines behaviors utilized when code is distributed via fossil. This class defines the
following two properties:

• fossil_url – The URL from which the fossil repository is to be cloned
• fossil_tag – The fossil tag to use for builds. If not specified the default is “trunk”

If a fossil executable is not available, the class will fall back to a snapshot. The URL of the
snapshot is auto-generated from the repository URL.

Class:	 sherpa.distribution.git	

A class that defines behaviors utilized when code is distributed via Git. This class defines the
following properties:

• git_url – The url from which the Git repository is populated
• git_branch – The branch of the code used for builds. The default is “HEAD”

If a Git executable is not available, the class will fall back to a snapshot. The URL of the
snapshot is auto-generated from the repository URL.

Build Classes
Build classes tell Sherpa how to compile and install raw source code downloaded to

$SANDBOX/$MODULENAME

A build must implement the following methods:

Class:	 sherpa.buildsystem	

Method: build_compile
Arguments: None

Perform any steps necessary to compile the code.

Method: build_install
Arguments: None

Perform any steps necessary to install this package in the local Odie.

Method: build_meta_data
Arguments: None

This method that extracts meta data from the build system. Data is returned as a dict. The
default is to return an empty dict.

Method: build_path
Arguments: None
Return the top-level directory where builds are performed.

Method: build_teapot_data
Return a chunk of text describing this package to be included in the teapot.txt file.

Method: build_vfs_install base
Arguments: base – Top-level directory of a new virtual file system

Perform the steps needed to install this package into a virtual file system.

Class:	 sherpa.buildsystem.autoconf	

A class which implements a build system using Gnu-style autoconf tools. Sherpa assumes:

1. The software builds from the root directory of the sources
2. If autogen.sh is present, it should be run with /bin/sh
3. If autogen.sh is not present, and configure is not present, and configure.in is present,

autoconf should be run.
4. If no Makefile is present, running ./configure will fix that. (When run, the configure

script specifies $ODIEROOT as the prefix and $ODIEROOT/bin as the bin dir.)
5. “make all” will build everything
6. “make install” will install everything

Class:	 sherpa.buildsystem.cmake	

This class implements a build system based on cmake. The implementation is mainly a
placeholder. I welcome (read that I am begging for) input from someone more knowledgeable in
cmake. A naïve first pass of an implementation is present, but no recipes use it yet.

Class:	 sherpa.buildsystem.kettle	

This class implements a build system based on Andreas Kupries’ kettle. It knows how to pass
the right commands to the module’s build.tcl file to get what it needs. It is currently used in the
recipes to build cmdr, critcl, fx, and tcl-linenoise

Class:	 sherpa.buildsystem.quill	

This class is a placeholder for interaction/coordination/participation with William Duquette’s
Quill build system. It doesn’t do anything as of the writing of this paper. However, it probably
will by the time you are reading this paper. Moreover, it certainly will by the end of the Tcl 2014
conference.

Class:	 sherpa.buildsystem.sak	

This class implements a build system based on the “Swiss Army Knife” (SAK) style installer
developed by Andreas Kupries, and deployed in Tcllib, Tklib and Taolib. Like the kettle driver,
the SAK driver is mainly an adapter to get what Sherpa wants out of the resident Tcl based
installer.

Class:	 sherpa.buildsystem.tea	

A descendent of sherpa.buildsystem.autoconf, this class adds the additional assumptions that:
1. The end product is a Tcl extension
2. The product conforms to the “norms” of the TEA specification.
3. If a tclconfig folder is missing from the root folder, one should be provided.
4. If a teapot.txt file exists, it is gospel.

Tea builds can be further configured with the following options:

• destroot_capable – Boolean, when true the Makefile understands how to redirect an
install with “make intall DESTROOT=$DESTROOT”. This option is ignored under
Cygwin. When false (or ignored) a VFS install image is synthesized from whatever the
package installs to $ODIEROOT/lib/$PKGNAME$PGKVERSION

Future Directions
Cross Compiling

Presently Odie supports one target at a time. With the level of control over the build process
that Odie allows, the focus on building Tcl and its extensions from scratch, etc., it should be
fairly straightforward to permit cross compiling from one platform to another. To enable this
properly, I would have to go back through the Sherpa system and make clear delineations
between Odie (the host operating system) and Todie (The target operating system.) While I
brewed up a few ideas in the process of writing this paper, the implementation is not ready for
prime time.

Better CMAKE support
Sherpa’s support for cmake is, at best, theoretical. As cmake is a popular build system, and

many Tcl applications and extensions are built with it, Sherpa will have to understand it better.
At this point, no extensions I have needed build with cmake, but there are many supporting
libraries from the c++ world that do. If you are a user of cmake, I welcome any input or code
contributions.

Microsoft Visual Studio Support
On the Windows platform, Odie uses MSYS/MinGW. There are many extensions, the latest

TWAPI in particular, which require Microsoft Visual Studio. I am not currently a Visual Studio
user. Any suggestions or code contributions are welcome.

Teapot Uploading
With all of the power to build extensions from scratch, the ability to download teapot archives,

and generate them, it would be nice to capture the teapot products produced by Odie and upload
them to a teacup server. Even nicer: in an automated fashion. The level of support would be
nowhere near what ActiveTcl provides, but for experimental builds, exotic platforms, or
regulatory environments that demand tight control over the build process, this would be an
excellent tool in the hands of the Tcl distribution maintainer.

JimTcl Integration
Odie currently uses autoconf and sh scripts to perform its low level bootstrapping. Sherpa was

written in Tcl8.6 and Tao out of expedience. Now that it has crystallized into a semi-stable form,
there is nothing that Odie or Sherpa does that requires a full-up installation of Tcl/Tk. With
some, albeit substantial, modifications, Odie and Sherpa could be re-engineered to operate using
Steve Bennet’s JimTcl. JimTcl has the advantage of running in a small memory footprint. It
builds as a single C file. Using JimTcl would eliminate the need to download the Tcl sources
separately to do a basic build.

Another fringe benefit is that it gets me out of having to hack in SH scripts and M4.

Aside from bootstrapping, it would also be useful to have an “Odie” like environment for
embedded Linux distributions. Many of them target JimTcl because of its small footprint. They
often compile on exotic platforms. In addition, usually, they have a need for some niche
extensions.

Quill Interoperability
William Duquette’s Quill is a brilliant high-level interface for developing standalone

executables, but it relies on externally produced basekits and packages. Odie is a system for
producing basekits and packages, but it lacks a high level interface to produce executables. Both
systems use the teapot as a currency of exchange.

FreeWrap/KitGen/KitCreator/Etc…
The primary focus of Odie is as a package builder. Odie happens to have a kit creator because:

1. I know how to do it
2. Building them under 8.6 is somewhat easier than under earlier Tcl releases.
3. There were issues under MinGW that required wrapping the entire tool in a self

contained executable to solve.

That said, Odie currently supports a very limited market in the Tcl universe: Namely bleeding
edge users on 8.6. To support older versions of Tcl, or kit building facilities not based on ZVFS,
the kit building facilities for Odie would have to be an order of magnitude more complex.

I would rather like users of Odie be able to call up these more sophisticated kits as recipes. I am
currently working on an Odie recipe for FreeWrap. I would be more than happy to either work
with, or graciously accept contributions from, other kit manufacturers.

Notes:
No Place Like $HOME on Windows

On the Windows platform, Odie is built under MSYS/MinGW. MSYS builds its own posix
environment, including its own $HOME directory for the user, all relative to:
c:/Mingw/msys/1.0. However, once Tcl is built, it uses the operating system’s notion of
where files exist, relative to c:.

Odie involves a lot of interchange between MSYS and Tcl. There’s the potential for confusion
with respect to file paths. (More than potential in my experience.) To make matters worse, many
autoconf tools do not handle spaces in path names properly.

I recommend creating your Odie in c:/odie because that folder is not subject to any
Windows or MSYS path magic. Both Msys utilities and Tcl can address a file care of c:/odie.

Sherpa Teapot Cache
Cached versions of packages are stored in the “download” folder of Odie. For every package

built there will be two files present: local.MD5HASH and local.MD5HASH.txt. The md5 hash is
built from the package name, package version, platform, and fossil checkout. If you have
multiple installations of Odie sharing a download folder, a package with the same name and
version will have two different hashes for the two different platforms. The .txt file next to the
hash of the same name is the contents of the teapot.txt file. If you are curious as to which
package goes with which hash, that information can be retrieved from there.

An index of all teapot downloadable packages is stored at $ODIEROOT/var/sherpa/teapot.rc.

Sherpa’s Database
Sherpa maintains a database of what packages have been installed, as well as meta data

collected from them, in a cached location under $ODIEROOT/var/sherpa. The SQLite file is a
master index of sherpa’s picture of the state of various packages. The .txt files are a backup copy
of the state and metadata from every package. The .txt files are present for the initial stages of
the build when SQLite may or may not be present. They also serve as a handy data backup
format if the Sherpa SQLite database should become corrupt, or if the database schema should
change. The schema for this database is rudimentary:
CREATE TABLE module_info (
 package string,
 field string,
 value string,
 primary key (package,field) on conflict replace
);

The contents of this database are accessible with the ::sherpa::meta_get command. It is
currently only used to record if a package was installed or not.

Extending Sherpa
Sherpa will source the “$ODIEROOT/etc/sherpa.rc” file if it exists. This file can be used to

define your own set of one-off Sherpa recipes, feed additional configuration information to
existing recipes, or act as a boot loader for an entire build suite. Use your powers for good.

Acknowledgments and External Links
As usual, I’m not so much developing new ideas as bundling the works of far more talented

individuals. The following projects are referenced in this paper:

Autoconf,
Automake, Gnu
Tools

Free Software
Foundation

https://www.gnu.org/software/software.html

Cmake Kitware http://www.cmake.org

FreeWrap Dennis LaBelle http://freewrap.sourceforge.net

JimTcl, Autosetup Steve Bennett http://jim.tcl.tk

Kettle Andreas Kupries http://core.tcl.tk/akupries/kettle/index

KitCreator Roy Keene http://kitcreator.rkeene.org/fossil/index

KitGen Pat Thoyts https://github.com/patthoyts/kitgen

MinGW/MSYS MinGW Team http://www.mingw.org

Quill William Duquette https://github.com/wduquette/tcl-quill

SQLite D. Richard Hipp http://www.sqlite.com

Tcl, Tk, Tcllib The Tcl Core
Team

http://core.tcl.tk

Teaparty Roy Keene http://www.rkeene.org/projects/info/wiki/189

Teapot/Teacup Jeff Hobbs,
ActiveState

http://docs.activestate.com/activetcl/8.4/tpm/toc.html

TOBE D. Richard Hipp http://www.hwaci.com/sw/tobe/index.html

TWAPI – Tcl
Windows API

Ashok P.
Nadkarni

http://twapi.sourceforge.net

Special Thanks Yous

I wish to express a very special thank you to Andreas Kupries, Gerald Lester, Joe Mistachkin
and Will Duquette for reviewing early drafts of this paper. I promize to hav less tpyos next
thyme.[sic]

Cover Art
The cover image is entitled “Conceptual drawing of a “typical lab” for Oak Ridge National

Laboratory’s Central Research Building (4500 North) prior to construction in the early 1950s.”,
and was downloaded from:

http://knoxblogs.com/atomiccity/2012/03/28/fancy_smancy_science_lab_1950s/

More Information
If you would like to know more about Odie, Taolib, or any of my other software tools, they are

available for download at:
http://fossil.etoyoc.com

Odie is at: http://fossil.etoyoc.com/fossil/odie
Taolib is at: http://fossil.etoyoc.com/fossil/taolib

For many of the extensions used in Odie, I have created a fossil mirror to collect any patches,

bug fixes, or build system reforms I have come up with. Where possible those changes are
passed back to the original projects. In many cases, there is no one actively maintaining those
projects. My fossil mirrors are located at:

http://fossil.etoyoc.com/fossil

I have also created what I dub “the sandbox” as a place where anyone can collaborate on

maintaining patches to Tcl and its extensions. The sandbox is a copy of every fossil respository I
maintain or mirror. In the sandbox, every repository is open to anonymous checkins. The
repositories also allow users to self-register, manage tickets, and alter the Wiki. That project is
located at:

http://fossil.etoyoc.com/sandbox

If you have any questions, comments, or contributions, I can be reached:

• on the TkChat app as “hypnotoad”
• via email at: yoda@etoyoc.com (For personal correspondance)
• via email at: swoods@tnesolutions.com (For business corresponadance)

